SUGGESTED PROCEDURAL GUIDELINE
Antibody Protocol GAD
OPPC-GDL-25

Prepared by: Clive Wasserfall
Revised by: N/A
Reviewed by: Maria Peterson
Approved by: Mark Atkinson

Original Effective Date: 08/01/2008
Version Effective Date: 03/08/2012
Reviewed Date: 01/30/2018
Approved Date: 03/08/2012

Current Version: 25.1
No. of Versions: 2
No. Pages: 04
Associated Forms: N/A

Network for Pancreatic Organ Donation with Diabetes (nPOD)
BMSB Room J586
P.O. BOX 100275
Gainesville, FL 3261

Network for Pancreatic Organ Donation with Diabetes (nPOD)
GAD ANTIBODY PROTOCOL

POLICY: Use universal safety precautions when handling human samples and personal protective equipment (e.g., face mask with shield, gloves, lab coat or apron).

PURPOSE: The purpose of this Suggested Operational Guideline (GDL) is to outline procedures for using the modified KRONUS® GAD Autoantibody ELISA kit.

SCOPE: This GDL will be applied to all autoantibody screening performed by screening labs in partnership with the nPOD project.

RESPONSIBILITIES: Managers and supervisors - are responsible for making sure that technicians are properly trained and equipment and facility are maintained in good working order.

Laboratory personnel - are responsible for reading and understanding this GDL and related documents and to perform these tasks in accordance with the GDLs. They are responsible for following clinical laboratory and tissue banking best practices.

EQUIPMENT & MATERIALS: The equipment and materials required are determined as per laboratory specifications, whichever is suitable for the specific task or procedure. Additional list of materials include:

- KRONUS GAD autoantibody ELISA kit
- Microtiter plate reader (with proper filter), set at 450nm or 405nm
- Pipettors calibrated to 25 and 100 ul
- Graduated cylinders
- Deionized or distilled water
- ELISA plate shaker or orbital rotator (500 rpm)
- Wash bottles or automatic plate washing system

PROCEDURE:

1.0 Preparation for Incubation

1.1 Calculate the number of individual ELISA plate wells needed for the assay. Allow all the reagents supplied, including the pouch containing the plate wells, to reach room temperature, at least 30 minutes.

1.2 Remove the number of strip wells required and fit them firmly into the frame provided. Kit calibrators and positive control (duplicate wells for each) must be included in each assay run. Calculate the volume of streptavidin-peroxidase (SA-POD) needed for the assay.
1.3 Pipette 25 μl of calibrators (in duplicate) into suitable wells of the coated strips and similarly for the serum samples and kit positive and negative controls. Cover the frame and incubate on an ELISA plate shaker (shaking at 500 rpm) at room temperature for 1 hour. During this 1 hour incubation, reconstitute the GAD65-biotin, dilute the required amount of SA-POD, and dilute the concentrated wash. See instructions in the package insert.

2.0 Post Incubation

2.1 After the first incubation period, aspirate or shake out the samples from the wells and wash each well with dilute washing solution three times. After the final wash, remove any excess liquid by gently tapping the inverted plate on an absorbent material.

2.2 Pipette 100 μl of reconstituted GAD65-biotin into each well (a repeating Eppendorf type pipette is preferred). Cover the frame and incubate on an ELISA plate shaker (shaking at 500 rpm) at room temperature for 1 hour. Repeat the washing procedure as described in 6.4 above, inverting and tapping the plate gently after the final wash.

2.3 Pipette 100 μl of reconstituted SA-POD into each well (a repeating Eppendorf type pipette is preferred). Cover the frame and incubate on an ELISA plate shaker (shaking at 500 rpm) at room temperature for 20 minutes.

3.0 Final Processes

3.1 After this incubation, aspirate or shake out the contents of the wells and wash each well with dilute washing solution three times and once with deionized water (water wash step is not required if an automated plate washer is used). Invert and tap as before.

3.2 Pipette 100 μl of peroxidase substrate (TMB) into each well (a repeating Eppendorf type pipette is preferred). Cover the frame and incubate for 20 minutes at room temperature in the dark without shaking during which time a blue color will develop.

3.3 Stop the substrate reaction by addition of 100 μl of stop solution to each well (a repeating Eppendorf type pipette is preferred). Shake the plates for 5 seconds at about 500 shakes per minute. This will cause the blue color to turn yellow.

3.3.1 It is important to ensure that the substrate incubation time (i.e., time from addition of substrate to addition of stop solution) is the same for each well.

3.4 Within 5 min after the addition of stop solution to the plate wells, read their absorbance at 405 nm and then again at 450 nm using an ELISA plate reader blanked against a well containing 100 μl of substrate plus 100 μl of stop solution.

3.5 Plot a calibration curve with absorbance at 450 nm or 405 nm on the vertical axis and calibrator concentration on a log10 scale on the horizontal axis and read off the concentration of GAD65 antibody in the test sera and positive control.

3.6 For purposes of nPOD, a reading greater than the second calibrator, i.e., >18 IU/ml, will be considered positive.

3.6.1 Should this value change, all participants will be alerted individually and this document will be updated.
REFERENCES:

1.0 Related Documents


REVISION HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>03/08/12</td>
<td>Added a reference. AW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Clive Wasserfall</td>
<td></td>
</tr>
<tr>
<td>Approved by</td>
<td>Mark Atkinson</td>
<td></td>
</tr>
</tbody>
</table>