Single cell resolution analysis of the human pancreatic ductal progenitor cell niche

AUTHORS
Mirza Muhammad Fahd Qadir1,2,§, Silvia Álvarez-Cubela1,§, Dagmar Klein1, Jasmijn van Dijk3, Rocío Muñiz Anquela4, Giacomo Lanzoni1, Saad Sadiq5, Yaisa B. Moreno-Hernández1,6, Belén Navarro-Rubio1,6, Michael T. García1, Ángela Díaz1, Kevin Johnson1, David Sant7, Camillo Ricordi1,8,9,10,12, Anthony Griswold11, Ricardo LuisPastori1,6,* and Juan Domínguez-Bendala1,2,8,*

1Diabetes Research Institute, U. of Miami Miller School of Medicine, Miami, FL 33136, USA 2Dept. of Cell Biology and Anatomy, U. of Miami Miller School of Medicine, Miami, FL 33136, USA 3Hanzes University of Applied Sciences, Groningen, The Netherlands 4VUmc School of Medical Sciences, Vrije Universiteit Amsterdam, The Netherlands 5Department of Electrical and Computer Engineering, University of Miami, Coral Gables, USA 6Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain 7Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, USA 8Dept. of Surgery, U. of Miami Miller School of Medicine, Miami, FL 33136, USA 9Dept. of Microbiology & Immunology, U. of Miami Miller School of Medicine, Miami, FL 33136, USA 10Dept. of Biomedical Engineering, U. of Miami Miller School of Medicine, Miami, FL 33136, USA 11The Dr. John T. Macdonald Foundation Department of Human Genetics/John P. Hussman Institute for Human Genomics; U. of Miami Miller School of Medicine, Miami, FL 33136, USA 12Dept. of Medicine, Division of Metabolism, Endocrinology and Diabetes, U. of Miami Miller School of Medicine, Miami, FL 33136, USA

PURPOSE
To analyze the human ductal progenitor cell niche at single cell resolution

METHODS
FACS-sorting of ALK3bright+ cells from human pancreatic samples, corresponding to the pancreatic ductal tree. Principal Component Analysis and Clustering. Validation. Sorting and transplantation into immunodeficient mice.

SUMMARY OF RESULTS
We have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the BMP receptor 1A (BMPR1A)/Activin-like Kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single cell RNA sequencing (scRNAseq) of ALK3bright+ -sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells.
CONCLUSIONS

Our analysis unveiled the existence of multiple sub-populations along two major axes, one that encompasses a gradient of ductal cell differentiation stages and another featuring cells with transitional phenotypes towards acinar tissue. A third potential ducto-endocrine axis is revealed upon integration of the ALK3bright+ dataset with a single-cell whole-pancreas transcriptome. When transplanted into immunodeficient mice, P2RY1+/ALK3bright+ populations (enriched in PDX1+/ALK3+/CAII− cells) differentiate into all pancreatic lineages, including functional β-cells. This process is accelerated when hosts are treated systemically with an ALK3 agonist. We found PDX1+/ALK3+/CAII− progenitor-like cells in the MPDs of type 1/2 diabetes donors, regardless of the duration of the disease. Our findings open the door to the pharmacological activation of progenitor cells \textit{in situ}.